Kinase-independent function of checkpoint kinase 1 (Chk1) in the replication of damaged DNA.

نویسندگان

  • Juliana Speroni
  • María Belén Federico
  • Sabrina F Mansilla
  • Gastón Soria
  • Vanesa Gottifredi
چکیده

The checkpoint kinases Chk1 and ATR are broadly known for their role in the response to the accumulation of damaged DNA. Because Chk1 activation requires its phosphorylation by ATR, it is expected that ATR or Chk1 down-regulation should cause similar alterations in the signals triggered by DNA lesions. Intriguingly, we found that Chk1, but not ATR, promotes the progression of replication forks after UV irradiation. Strikingly, this role of Chk1 is independent of its kinase-domain and of its partnership with Claspin. Instead, we demonstrate that the ability of Chk1 to promote replication fork progression on damaged DNA templates relies on its recently identified proliferating cell nuclear antigen-interacting motif, which is required for its release from chromatin after DNA damage. Also supporting the importance of Chk1 release, a histone H2B-Chk1 chimera, which is permanently immobilized in chromatin, is unable to promote the replication of damaged DNA. Moreover, inefficient chromatin dissociation of Chk1 impairs the efficient recruitment of the specialized DNA polymerase η (pol η) to replication-associated foci after UV. Given the critical role of pol η during translesion DNA synthesis (TLS), these findings unveil an unforeseen facet of the regulation by Chk1 of DNA replication. This kinase-independent role of Chk1 is exclusively associated to the maintenance of active replication forks after UV irradiation in a manner in which Chk1 release prompts TLS to avoid replication stalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases.

Checkpoint adaptation was originally defined in yeast as the ability to divide despite the presence of damaged DNA. An important unanswered question is whether checkpoint adaptation also occurs in human cells. Here, we show that following the ionizing radiation-induced G(2) checkpoint, human osteosarcoma cells entered mitosis with gamma-H2AX foci, a marker for unrepaired DNA double-strand break...

متن کامل

The kinase domain residue serine 173 of Schizosaccharomyces pombe Chk1 kinase is critical for the response to DNA replication stress

While mammalian Chk1 kinase regulates replication origins, safeguards fork integrity and promotes fork progression, yeast Chk1 acts only in G1 and G2. We report here that the mutation of serine 173 (S173A) in the kinase domain of fission yeast Chk1 abolishes the G1-M and S-M checkpoints with little impact on the G2-M arrest. This separation-of-function mutation strongly reduces the Rad3-depende...

متن کامل

Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening.

Checkpoint kinase 1 (CHK1) is an essential serine/threonine kinase that responds to DNA damage and stalled DNA replication. CHK1 is essential for maintenance of replication fork viability during exposure to DNA antimetabolites. In human tumor cell lines, ablation of CHK1 function during antimetabolite exposure led to accumulation of double-strand DNA breaks and cell death. Here, we extend these...

متن کامل

Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation.

Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal th...

متن کامل

Human cells enter mitosis with damaged DNA after treatment with pharmacological concentrations of genotoxic agents

In the present paper, we report that mitosis is a key step in the cellular response to genotoxic agents in human cells. Cells with damaged DNA recruit γH2AX (phosphorylated histone H2AX), phosphorylate Chk1 (checkpoint kinase 1) and arrest in the G2-phase of the cell cycle. Strikingly, nearly all cells escape the DNA damage checkpoint and become rounded, by a mechanism that correlates with Chk1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 19  شماره 

صفحات  -

تاریخ انتشار 2012